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In planning randomized clinical trials (RCTs) for diseases such as Alzheimer’s
disease (AD), researchers frequently rely on the use of existing data obtained
from only two time points to estimate sample size via the subtraction of baseline
from follow-up measurements in each subject. However, the inadequacy of this
method has not been reported. The aim of this study is to discuss the limitation
of sample size estimation based on the subtraction of available data from only
two time points for RCTs. Mathematical equations are derived to demonstrate
the condition under which the obtained data pairs with variable time intervals
could be used to adequately estimate sample size. The MRI-based hippocampal
volume measurements from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and Monte Carlo simulations (MCS) were used to illustrate the existing
bias and variability of estimates. MCS results support the theoretically derived
condition under which the subtraction approach may work. MCS also show the
systematically under- or over-estimated sample sizes by up to 32.27% bias. Not
used properly, such subtraction approach outputs the same sample size regard-
less of trial durations partly due to the way measurement errors are handled.
Estimating sample size by subtracting two measurements should be treated with
caution. Such estimates can be biased, the magnitude of which depends on the
planned RCT duration. To estimate sample sizes, we recommend using more
than two measurements and more comprehensive approaches such as linear
mixed effect models.
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1 INTRODUCTION

It is a common practice when planning randomized clinical trials (RCTs) to use an existing dataset for the estima-
tion of sample size needed to detect the treatment efficacy. In RCTs for diseases such as Alzheimer’s disease (AD),
the longitudinal changes of an outcome variable are often obtained by subtracting measures from two time points:
the baseline and the follow-up. Power analysis is always an important part of designing placebo controlled RCTs.
Among a number of possible causes for the negative outcomes of multiple recent RCTs in patients with AD or
mild cognitive impairment (MCI), the insufficient number of enrolled participants cannot be ruled out. This report
examines the limitation of the power analysis that is based on the subtraction of available data from only two time
points.

Statistical power analysis balances the likelihood of confirming a hypothesis (eg, with an 80% chance) and controlling
the likelihood of a false positive (eg, with a 5% type-I error). A typical AD RCT tests the hypothesis that the efficacy
outcome of an intervention will be better (eg, 25% more efficacious) on the treatment arm compared to the placebo
arm. This co-called effect size could arise from interventions for disease modification, symptomatic treatment, or disease
prevention, therefore it accounts for the drug’s pharmacodynamic and/or pharmacokinetic profiles. For AD RCTs, the
hypothesis is that the intervention introduced to the treatment arm slows or reverses the baseline-to-follow-up declines.
Because estimated sample sizes for RCTs represent the minimum number of subjects needed to detect such effect size,
under-estimates in sample size could adversely affect trial outcomes.

To estimate the number of subjects needed for future RCTs, researchers typically use existing longitudinal datasets.1-3

The existing data are often times observational only, and the observed changes from the progression of the underlying
disease are conceptually equivalent to what would be expected from the placebo arm in the planned RCT. It is not uncom-
mon that the existing longitudinal data have only measurements from two time points—the baseline and one follow-up,
and the sample size estimation is based on their difference.4-7 Other methods exist, with data available from additional
data points beyond only two time points, such as linear mixed effects (LME) models8,9 and mixed models for repeat mea-
sures (MMRM).10,11 This study discusses the limitation of power analyses related to the situation where data from only
two time points are available.

The subtraction approach suffers from a major weakness that is counter intuitive: the estimated number of subjects is
the same regardless of the duration of the proposed RCT (unless with additional conditions, see Discussion). This report
examines this weakness and derives the conditions under which longitudinal data from only two time points could be
used to adequately estimate sample size. Finally, we used the LME model and Monte Carlo simulations (MCS) to analyze
longitudinal hippocampal volumetric data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to investigate
the bias and variability of sample size estimates.

2 MATERIALS AND METHODS

2.1 Theoretical considerations

We assume the use of the LME model to derive the condition under which the simple subtraction approach can be
adequate for the two-time-point longitudinal data analysis from multiple subjects. The LME model jointly explains
the population-level fixed effects and the subject-specific random effects to evaluate the relationship between average
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responses and time measurements based on a linear regression paradigm.8 Such model generally has three assumptions:
(1) the change of response over time is linear, (2) the observation at each time point is contaminated by an additive Gaus-
sian error (residual term), which is independently and identically distributed (i.i.d) for all visits (this can be loosened, but
is outside the scope of this report), and (3) the random effect terms are independent of the residual term.

We estimate the sample size per arm for a balanced RCT that would last for Tp years by first assuming no subject
dropout (Tp is the number of years for a planned trial, and the subscript p stands for planned). For an existing dataset that
was collected independent of and before the proposed trial, we assume there are N subjects (N>1) and subject j (j=1, 2, …,
N) has the baseline observation xb

j and a follow-up observation xf
j with the observation time length Tj, where Tj is the time

duration (in years) between the first and second visits for subject j. We recognize the baseline-to-follow-up time variability
among subjects and that the average baseline-to-follow-up time duration does not necessarily equal to the planned RCT
duration.

2.2 Simple subtraction

A straightforward subtraction procedure to estimate sample size with two-time-point measurements is as follows

(Figure 1). First, the per-year change for each subject is found; that is, for subject j it is
xb

j −xf
j

Tj
= Δj

Tj
. Under the assumption

of linear change, the estimated Tp-year change for subject j becomes Tp ×
xb

j −xf
j

Tj
. The mean change over Tp-years over

all N subjects is Tp × Δ, and the standard deviation (std) is Tp × stdΔ. Here, Δ is the one-year mean change over N

subjects,Δ = 1
N

∑
j
Δj

Tj
, and stdΔ is the within arm standard deviation, stdΔ =

√
1

N−1

∑
j

(
Δj

Tj
− Δ

)2
. For planning clinical

trials, we assume Δ is the change in the placebo arm without any intervention. Note that the durations (the time interval
lengths) between the two consecutive time points for individual subjects, the annualized average over subjects (Δ above)
and the effect size are for the existing dataset, therefore are as given. The inadequacy of using such preacquired data (with
the given durations) to estimate the sample size for a planned clinical trial with its own duration is the focus of this study.
See more on this important issue in the Discussion section.

For sample size estimation, we assume the statistical power to be 80% and the two-tailed type-I error to be 0.05.
Also, we assume the treatment effect to be 25%.3,5,12-15In other words, the change in the treatment arm of the planned
clinical trial is 0.75×Δ due to the treatment. As a side note and discussed below, our conclusions are independent of these
parameters. We also assume that the treatment has no effects on the variability or both trial arms have the same standard
deviation equivalently. With these parameters and assumptions, the sample size estimation is straightforward, having
a closed mathematical expression. The estimated sample size Np depends only on the ratio of the standard deviation
over the mean difference between the two arms

((
Tp × stdΔ

)
∕
(

Tp × 0.25 × Δ
)
= stdΔ∕ (0.25 × Δ)

)
based on the Gaussian

distribution assumption: Np = 2
(

z1−𝛼∕2 + z1−𝛽
)2 × (stdΔ∕ (0.25Δ))2, where the appearance of 2 is related to the fact that

the std of the mean difference is equal to the std of the placebo arm (or equivalently the treatment arm) multiplied by√
2, z1−𝛼∕2 and z1−𝛽 are the corresponding z-score at 1 − 𝛼∕2 and 1 − 𝛽 separately, only determined by the given statistical

power (1 − 𝛽) and type-I error (𝛼).1,16 Note, subscript p in Np is again for planned (trial) and Np is the estimated sample size
per arm for a balance design. Thus, given these statistical power, the type-I error and the treatment effect, the sample size
is only dependent on the ratio stdΔ∕Δ, independent of the trial duration, which is counter intuitive. Also, this provides
us the rational for our discussion below to focus on the ratio stdΔ∕Δ only.

2.3 When simple subtraction is adequate for sample size estimation

As we noticed just above, the sample size estimation for the planned clinical trial is solely based on the ratio stdΔ∕Δ of
the existing dataset (viewed as the placebo arm in the trial). Using an LME model, the baseline and follow-up measures
for subject j in the existing dataset are:

xb
j = b + ktb

j + bj + kjtb
j + 𝜀b

j ,

xf
j = b + ktf

j + bj + kjtf
j + 𝜀

f
j , (1)
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where b and k are the fixed intercept and slope for all subjects, respectively. The index j corresponds to subject j, and
bj and kj are the random intercept and slope for subject j, respectively. The baseline and follow-up times are tb

j and tf
j ,

respectively, and Tj = tb
j − tf

j . Also, the term 𝜀b
j or 𝜀f

j is the measurement noise, referred to as the residual error for baseline
time and followup time, respectively. As mentioned earlier, the residual error is i.i.d, with zero expectation and standard
deviation 𝜎e. Thus, the measurement change in subject j is:

Δj = xb
j − xf

j = Tj(k + kj) + 𝜀b
j − 𝜀

f
j . (2)

Note that the residual error difference 𝜀b
j − 𝜀

f
j is a random variable, cannot be canceled out by the subtraction

(though the difference has expectation 0). We denote the standard deviation of residual error difference as 𝜎d. Under the
i.i.d. assumption, 𝜎d =

√
2𝜎e, where 𝜎e is the standard deviation of the error term at a given visit. Note that under no

circumstances we can assume zero 𝜎d.
The sample size for an RCT, which is planned to last for Tp years, can be estimated by using baseline and follow-up

measurements for either an ideal or real-world scenario. Both scenarios utilize Equation (2).

Ideal scenario: The data pairs of baseline and follow-up measurements used for the sample size estimation of an
RCT of Tp-year duration are acquired exactly Tp years apart for all subjects; that is, Tj = Tp for all
j. In this case, for the jth subject, we can directly use baseline and follow-up data to calculate the
variance of change over trial period such as.

var
(

Tp
Δj

Tj

)
= var

(
Tp

Δj

Tp

)
= var(Δj) = T2

p𝜎
2
𝛽
+ 𝜎2

d, (3)

F I G U R E 1 The flowchart of estimating sample size with the two-time point subtraction procedure.
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where 𝜎2
𝛽

is the variance of random slope kj over subjects. The variance of the sum of Tp
Δj

Tj
over N

subjects for total change during Tp years is:

var

(∑
j

Tp
Δj

Tj

)
= var

(∑
j

Tp
Δj

Tp

)
= var

(∑
j
Δj

)
= NT2

p𝜎
2
𝛽
+ N𝜎2

d. (3′)

Real-world scenario: Tj varies among subjects according to Equation (2). We first convert a change to a change per-year,
and then we write Equation (4) for the Tp-year change:

Tp
Δj

Tj
= Tp(k + kj) + Tp

𝜀b
j − 𝜀

f
j

Tj
. (4)

Under the assumption of independent subject specific random effect and residual error, for the jth

subject, we have

var
(

Tp
Δj

Tj

)
= T2

p𝜎
2
𝛽
+

T2
p𝜎

2
d

T2
j

. (5)

And for N subjects:

var

(∑
j

Tp
Δj

Tj

)
= NT2

p𝜎
2
𝛽
+ T2

p𝜎
2
d

∑
j

1
T2

j

. (5′)

Because both the ideal and real-world scenarios have the same goal of estimating the sample size
for an RCT with a duration of Tp years, we can identify under what condition the estimated sample
sizes are the same for the two scenarios. We only need to consider the variance, or the standard
deviation to be used in the sample size estimation, because the expected mean change over Tp
years is simply Tp × k, owing to the zero expectation of the kj term in both scenarios. By equating
Equation (3’) with Equation (5’), Equation (6) is obtained which shows the condition under which
the two scenarios are equivalent, that is, they provide equivalent sample size estimation:

∑
j

1
T2

j

= N
T2

p0
. (6)

In this expression, we use Tp0 specially to indicate it is the trial duration that can make use of the
existing data to provide adequate sample size. It is interesting to note that Tp0 is not the simple arith-
metic mean over Tj. Instead, the reciprocal of the squared Tp0 equals the mean of the reciprocals of
squared individual time lengths Tj as Equation (6) can be rewritten as: 1

N

∑
j

1
T2

j
= 1

T2
p0

.

2.4 Data

While there are a number of different well-established AD biomarkers,7,17-21 we opt to use volumetric hippocampus mea-
surements from structural magnetic resonance imaging (MRI) data.22-25 Any existing dataset with variable follow-up time
points could be used to illustrate the limitations of the simple subtraction procedure. We use the MRI data from the
ADNI (adni.loni.usc.edu) to illustrate a general point, relevant to sample size estimates for all clinical trials, not only AD.
The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial MRI, positron emission tomography (PET), and clinical and
neuropsychological assessments can be combined to measure the progression of MCI and early AD. For up-to-date infor-
mation, see www.adni-info.org. The ADNI study was approved by the institutional review boards of the participating
institutions. Informed written consent was obtained from all participants.

http://www.adni-info.org
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The participants include 182 persons with clinical diagnosis of MCI (male/female: 108/74; age range: 57.2 to 90.7 years;
age mean: 72.9± 7.0 years; mini-mental state examination (MMSE) range: 22 to 30; mean MMSE: 28.1±1.7). Each person
has at least two longitudinal structural MRI observations over the time interval from 1.50 to 2.37 years. Data from all visits
are used to estimate the parameters in the LME model. For simple subtraction, we use the baseline data and the data from
one follow-up visit that occurred on average approximately 2 years after the baseline (mean: 1.995 ± 0.119 years).

The structural MRI data are acquired at multiple sites. (http://adni.loni.usc.edu/methods/documents/mri-protocols/)
and are gradwarped, intensity corrected and scaled for gradient drift. They are preprocessed with FreeSurfer 5.3 with
images intensity normalization and skull stripping, and cortical and subcortical regions are labeled. The automated
segmentations have also been manually inspected and corrected as needed (surfer.nmr.mgh.harvard.edu/fswiki/).26,27

We obtain the relative hippocampal volume by dividing hippocampal volume by intracranial cavity volume (ICV)
for each subject. The mean relative hippocampal volume of all subjects is 0.00467 ± 0.00082 at baseline and
0.00451 ± 0.00096 at the 1.995-year follow-up. The average change of relative hippocampal volume over this period
is 0.00017 ± 0.00036.

2.5 Monte Carlo simulations based on LME model

The MCS has been conducted based on the LME modeling of the ADNI data. We simulate the relative hip-
pocampus volume at different relative ages. The relative age is calculated as the difference between the ages
at the time of scanning and the time of conversion to AD for subjects who progressed to AD at the end
of the follow-up period (MCI-c). For subjects who maintained a diagnosis of MCI (MCI-nc), their relative
ages are calculated as the difference between the scanning time and the average conversion time for MCI-c
subjects.

For the 182 subjects, we fit data from 438 visits to the LME model, which includes more time points than the selected
two-time points. Here, we estimate the following model parameters—fixed parameters, random effect covariance matrix
and the random error term variance matrix, and we treat these estimated parameter values as true model values in the
subsequent MCS. Then we compare the sample size output according to Equation (3) to the sample size generated from
the simple subtraction procedure.

To examine how the size of the existing dataset affected the estimated sample size, we run MCS on datasets consisting
of N=182, N = 182 × 2 and N = 182 × 3 subjects, which correspond to the original, doubled and tripled sample sizes of
the existing dataset, respectively. We compute the mean bias and associated std for a given planned trial duration over
500 repetitions.

Each simulation run i, (i=1, 2, …, 500) has the following steps:

1. For each subject j, (j=1, 2, …;, N):
a. Select the two-time points that are Tj years apart.
b. Generate the subject’s random intercept and slope following the joint Gaussian distribution with the given

parameters from the fitted model.
c. Generate the Gaussian measurement error under the assumption it is independent from the random effect terms.
d. Compute the hippocampal volumes xb

j and xf
j at the two time points.

e. Repeat steps 1a–d for all N subjects.
2. Apply the simple subtraction procedure to the simulated data from the N subjects.
3. Estimate the sample size, Npi, for simulation i with 80% power, a two-tailed type-I error of 0.05 and a 25% treat-

ment effect in the treatment arm relative to the placebo arm. The different Npi estimates are computed separately for
the planned trial durations of Tp=1, 1.98 and 5 years, with the original, doubled, and tripled existing dataset sizes,
respectively. Note that 1.98 is the Tp value that satisfies Equation (6).

4. Compute the percentage bias of the relative true sample size based on the LME model and the simple subtraction
approach.

http://adni.loni.usc.edu/methods/documents/mri-protocols/
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3 RESULTS

3.1 Sample size estimation with simple subtraction

For a given treatment effect, the simple subtraction method estimates the same number of subjects required
regardless of trial duration. The simple subtraction procedure fails because the standard deviation of mea-
sured changes is not linear with respect to time. More specifically, the noise term in Equation (2), the
residual error of the data, is unrelated to the trial duration, Tj. Though the random intercepts can-
celed out between two visits, two residual error terms do not cancel out because they are assumed to be
i.i.d.

3.2 Condition under which simple subtraction is adequate

Sample size estimation using simple subtraction is adequate when the subject-dependent time intervals between baseline
and follow-up satisfy Equation (6), or equivalently,

Tp0 =
√√√√√ N∑

j

1
T2

j

. (6’)

T A B L E 1 The relative sample size bias (percentage) and the variations (std) from
simple subtraction for different planned RCT durations

Tp = 1 Tp = Tp0
= 1.98 Tp = 5

Data size Mean std Mean std Mean std

N = 182 −30.85 24.06 4.02 36.20 21.74 42.36

N = 182 × 2 −30.76 16.66 4.15 25.07 21.89 29.34

N = 182 × 3 −32.27 12.68 1.89 19.08 19.24 22.33

Note: Tp is the number of years for a planned trial; Tp0 is the value of Tp satisfying Equation (6); std
represents the standard deviation.

F I G U R E 2 The relative sample size bias (percentage) based on subtraction of the existing dataset from two-time points that are
average approximately two years apart. Error bars are standard deviations, and Tp is the trial duration. When Tp = Tp0 =1.98 years, the
sample size can be estimated using simple subtraction. When Tp = 1 years (<1.98), the sample size obtained with the simple subtraction is
under-estimated. When Tp = 5 years (>1.98), the sample size is over-estimated. As shown by the error bars, the variability of the sample size
bias would decrease when N increases [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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We note that a common Tp for all subjects is a special case that satisfies Equations (6) or (6’). Also, when the standard
deviation of residual error is small relative to the standard deviation of random slope, these residual error terms can be
ignored or treated as close to zero, then the residual errors would cancel out with subtraction.

3.3 Sample size bias and variability from simple subtraction

The theoretical sample sizes are calculated based on the LME model. We attain the sample sizes of 1581, 1051,
and 898 for the planned RCT with durations Tp of 1, 1.98, and 5 years, respectively. To calculate the relative sam-
ple size bias, we generate the ratios of the difference between the estimated sample size from simple subtraction
and the theoretical sample size over the theoretical value for different planned RCT durations. The biases and
variations have been all assessed using the 500 times MCS for different trial durations. Table 1 and Figure 2 show the
relative sample size biases (percentage) and the variations from simple subtraction for the three different planned RCT
durations.

As shown in Table 1 and Figure 2, the sample size bias is almost zero when the trial duration Tp equals to Tp0 (Tp0 =
1.98), consistent with our theoretical conclusion. These biases are 4.02%, 4.15% and 1.89% for N = 182, N = 182 × 2 and
N = 182 × 3, respectively. When Tp is less than Tp0, (e.g., Tp = 1) the sample size obtained with the simple subtraction
procedure is under-estimated by as much as 32.27%. When Tp is larger than Tp0 (eg, when Tp = 5), the sample size is
over-estimated by 21.89%. As shown by the error bars in Figure 2, the variability of the sample size bias decreases when
N increases (eg, when Tp = Tp0 = 1.98, std = 36.20% , 25.07% , 19.08% , for N = 182, N = 182 × 2, and N = 182 × 3,
respectively).

4 DISCUSSION

We have examined the sample size estimation for a planned RCT via subtraction of two-time-point measurements,
discussed why the estimated sample size should in general depend on trial duration, and identified the special cases
when the sample size estimation from simple subtraction might be correct. We note that the use of two-time-point
measures, which is common for expensive studies like those that use neuroimaging-based biomarkers, differs from stud-
ies with more frequent measures, such as safety or clinical outcomes. Our findings do not apply to studies with more
frequent measures or to studies that are analyzed with statistical procedures like LME models8,9 or MMRM.10,11 Esti-
mated sample sizes generated from more than two observations have been reported extensively in the literature.9,14,15,28-30

We note that it is important to account for measurement variability appropriately across time for power
analysis.

We would like to characterize this report as with the nature of reporting a problem rather than resolving a problem.
Nevertheless, mixed in the following discussions and in italic fonts, we offered some words of advice on how to deal with
the limitations when data from only two time points are available. These pieces of advice are intended for some “cheap”
solutions for the problem we reported in this investigation.

To account for both between-subject random effects and within-subject residual errors and to understand the issues
related to simple subtraction approach, we used the LME model.8 It is noticed that the simple subtraction has to be
properly scaled in order to account for the inter-subject two-visit time length variation (see Equation (2)). If not linear,
dividing Tj may not get you a term that is independent of Tj. In the nonlinear case, the simple subtraction is practically
not feasible unless we assume that the magnitude of changes does not depend on the time length over which the changes
occur.

When Tp was equal to Tp0, simple subtraction is adequate (Table 1 and Figure 2). In this case, we advise it is safe to use
the simple subtraction method. For longer RCT durations, the required sample size is generally smaller. Simple subtrac-
tion underestimates the sample size when Tp < Tp0 and overestimates the sample size when Tp > Tp0 (Figure 2).When the
overestimation is affordable, then the simple subtraction approach can be used. Such trends are observed based on the aver-
age estimated sample size bias from MCS. The absolute difference between the theoretical sample size and the estimated
sample size from simple subtraction is larger when Tp < Tp0 (nearly 30%) than when Tp > Tp0 (nearly 20%). For each
RCT duration, the standard deviation of the relative sample size bias shows a decrease trend as the number of subjects in
the existing dataset increase (Table 1 and Figure 2).
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The simple subtraction approach worked if one of the following conditions is met: (1) the measurement error is ignor-
able or linearly related to trial duration; (2) the proposed RCT duration Tp and the individual Tj satisfy Equations (6); and
(3) if between-subject variability of the annualized change is low, the stdΔ∕Δ ratio is roughly proportional to 1∕Tp and the
corresponding sample size decreases for longer Tp duration. Of course, our findings can be generalized to other outcome
measures in AD or trials for any other diseases/conditions.

Because it uses data from just two time points, the simple subtraction method lacks the information on how the
change occurs between the two measurements. If the change happens to be linear, it is possible for simple subtraction to
accurately estimate sample sizes when the follow-up time is equal to the planned trial duration. If the change is nonlinear,
more studies are needed for the use of the simple subtraction method. It is possible that the simple subtraction method
could be amended to account for the variance in the data, but such a modification is outside the scope of this paper. Our
math derivations can potentially be used in future studies to generate an accurate subtraction method based on two time
points and LME models.

Though the sample size estimation equation does not include trial duration explicitly, it is implicitly included via
the effect size, in the sense that one would expect the effect size corresponding to the treatment effect to be smaller for
short duration than for long ones. To take the exact advantage of bigger effect size in the existing dataset, researchers
should select only samples whose baseline-followup time differences satisfy Equation (6) with the corresponding larger
Tp, or samples whose baseline-followup time differences are close to Tp (longer duration means bigger effect size). These
suggestions given here reflected the limitation of the subtraction of two consecutive time points in that the effect size
and the duration are preset due to the fact that dataset used were already in existence. The only flexibility left is then
the selection of subcohort from this existing dataset to match the planned trial duration, recognizing the fact that the
quantitative and yet implicit relationship between effect size and the trial duration was not considered appropriately by
this simple subtraction approach. With more longitudinal time points available (>2), this effect size/duration relationship
can be quantified, and the sample size more adequately estimated for varying duration of a planned trial.

The fact that the simple subtraction approach caused the estimated sample sizes to be the same regardless of trial dura-
tion in general (but see possible exceptions for condition 3) needs better understanding. Note that the absolute change,
which corresponds to the final treatment effect, could be different depending on the trial duration. If the relative treat-
ment effect was 25% for a one-year clinical trial and the change in the placebo arm was 1.0, then the difference between
the placebo and treatment arms would be 0.75. If the relative treatment effect was still 25% but the trial duration was two
years, then the two-year absolute change without treatment would be 2.0, which does rely on the assumption of linearity
with time. The difference between the placebo and treatment arms with the 25% treatment effect will be 1.5. Thus, even
though the one-year and two-year clinical trials would have had the same common relative treatment effect of 25%, the
absolute differences between the two arms would not be the same depending on the length of time.

There are limitations of this study. The first limitation of this study is primarily related to the assumptions we included
in the LME model. We assumed the noise in the data was Gaussian and that the measured changes were linear with
time. Secondly, we only derived the conditions under which simple subtraction might work and identified the issues with
this method. Procedures to address the inadequacy of the simple subtraction method when data are only available from
two-time points should be topics for future research. Briefly, such procedures may 1) require prior knowledge of the LME
model or 2) consider the possibility of combining bias information to correct sample size estimates after more careful
examinations of the effects of intersubject variability in the time to follow-up measurements on the bias and variability
of sample size estimation.

In conclusion, the use of simple subtraction on two time points for the estimation of RCT sample sizes should be
used with caution because this method can be biased when the trial duration is longer or shorter than the observed
measurement intervals and there are substantial individual variations in measurement interval.
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